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Toxicity of Mycotoxins for the Rat
Pulmonary Macrophage in Vitro
by W. G. Sorenson,*t G. Frank Gerberick,*t
Daniel M. Lewis,*t and Vincent Castranova*t

The presence of mycotoxins in grains is well documented. Workers in grain handling occupations are
commonly exposed to grain dust aerosols. Work in our laboratory has shown that T-2 toxin is highly toxic
to rat alveolar macrophages in vitro, causing loss of viability, release of radiolabeled chromium, inhibition
of macromolecular synthesis, inhibition of phagocytosis, and inhibition of macrophage activation. Sim-
ilarly, patulin caused a significant release of radiolabeled chromium, decrease in ATP levels, significant
inhibition of protein and RNA synthesis, and inhibition of phagocytosis. The data show that both T-2
toxin and patulin are highly toxic to rat alveolar macrophages in vitro. The data further suggest that the
presence of these mycotoxins in airborne respirable dust might present a hazard to exposed workers.

Introduction
Several previous studies have shown that exposure

to grain dust can lead to various respiratory disorders
(1,2), yet much remains to be learned of the role of
various grain dust components in pulmonary disease.
Grain dust is a heterogeneous mixture that is often con-
taminated by silica, bacterial endotoxins, insects, mites,
mammalian debris, various chemical additives such as
pesticides and herbicides, and fungi and their metabo-
lites. Mycotoxins are fungal metabolites. Contamination
of various grain products with mycotoxins has been well
documented (3-5), and recently aflatoxin has been
shown to occur in the respiratory fraction of airborne
corn dust (6,7). More recently, Hayes et al. (8) dem-
onstrated that mortality for total cancer and respiratory
cancer in aflatoxin-exposed peanut oil press workers in
the Netherlands was higher than expected based on
standardized mortality ratio (SMR) analysis.
T-2 toxin is a product of several Fusarium species.

Fusarium species are common contaminants ofsuch field
crops as corn, wheat, and oats (5,9). Toxic metabolites
of Fusarium were responsible for a human disease out-
break (alimentary toxic aleukia) and have been impli-
cated as the causative agent in many animal intoxica-
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tions (10). Trichothecenes such as T-2 toxin are
cytostatic for unstimulated and mitogen-stimulated
lymphocytes (11), fibroblasts (12), neoplastic cells such
as HeLa cells (13), and transformed intestinal cells (14).
In addition, Lefarge-Frayssinet et al. (15) have shown
that T-2 toxin induces severe damage to rat splenic cells
in vitro. T-2 toxin induces the depletion of murine thy-
mus (16), inhibits the synthesis of anti-sheep red blood
cell antibodies, and prolongs the period required for skin
graft rejection (17). It strongly inhibits protein and
DNA synthesis (18).

Patulin is a polyketide lactone mycotoxin produced
by several common species of Aspergillus and Penicil-
lium. It has been reported to be common in moldy corn
silage (19) and in naturally rotted apples (20). The initial
interest in patulin was for its antimicrobial properties,
but subsequent work has shown it to be toxic in exper-
imental animals (21,22), carcinogenic in rats (23), mu-
tagenic in yeast (24), and teratogenic in chick embryos
(25). Patulin was also shown to be the etiologic agent
in an accidental epidemic of feed poisoning in Japan
resulting in the mass death of 118 dairy cows in 1952
(26). Patulin induces single-strand and double-strand
breaks in HeLa DNA (27) and causes a high percentage
of polyploid cells in human leukocyte cultures (28). More
recent studies have demonstrated that patulin inhibits
transcription in RNA synthesis in a cell-free system
from rat liver (29), inhibits translation of protein
syntheses in rabbit reticulocyte lysates (30), and inhibits
synthesis of r-RNA, t-RNA, and probably m-RNA in
Saccharomyces cerevisiae (31).
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The purpose of this investigation was to study the
toxicity of T-2 toxin and patulin in rat alveolar macro-
phages in vitro. Pulmonary alveolar macrophages per-
form several important functions in the lung including
phagocytosis of living and nonliving foreign particles,
regulation of T-lymphocyte proliferation, provision of
T-helper activity for antibody production, and produc-
tion of mediators of cellular immunity (32). Thus, cy-
totoxic damage to alveolar macrophages could lead to
serious pulmonary and/or systemic damage.

Materials and Methods
Mycotoxins

T-2 toxin (3-hydroxy-4,15-diacetoxy-8[3-methylbu-
tyryloxy]-12, 13-epoxy-A9-trichothecene) was pur-
chased from Calbiochem, La Jolla, CA, and dissolved
in 100% dimethyl sulfoxide (DMSO, Pierce Chemical
Co., Rockford, IL). Substocks were prepared by per-
forming 10-fold dilutions in 10% DMSO and the final
DMSO concentration in all cultures was 0.1%.

Patulin was obtained from Aldrich Chemical Com-
pany (Milwaukee, WI), and fresh stock solutions were
prepared daily in 100% DMSO for each experiment (33).
Appropriate solvent controls were included in all ex-

periments.

Alveolar Macrophage Isolation and Culture
Alveolar macrophages were harvested from male

Long-Evans hooded rats by tracheal lavage (33-35). The
cells were routinely tested for viability, cell purity, and
esterase (34). Cells were incubated at 37°C in 5% CO2
in Delbecco's medium 199 containing 10% fetal bovine
serum (FBS) and antibiotics (100 units/mL penicillin and
100 ,ug/mL streptomycin) unless indicated otherwise.

Viability, Cell Number, and Viability
Index Assay
The toxicity of T-2 toxin was studied using the meth-

ods described by Waters et al. (36,37). Percent viability
was determined by the trypan blue dye exclusion tech-
nique with a hemocytometer. Cell number was defined
as the number of intact cells in treated cultures ex-

pressed as percent of control. Viability index was de-
fined as the product ofthe viability ratio and cell number
ratio. Arcsine transformation and linear regression cal-
culations were done by computer.

Determination of Mean Cell Volume
Mean cell volume was determined by Coulter Counter

(Model ZB) equipped with a Channelyzer. In experi-
ments with T-2 toxin where exposures were 6 and 18
hr, cells were removed from the plates with trypsin (34).
Patulin treatments were < 2 hr and were done with
cells suspended in Hank's balanced salt solution (33).

Chromium Release Assay
Freshly isolated AM were incubated with [51Cr]-so-

dium chromate for 45 min, washed three times, and
resuspended in medium 199. Aliquots (0.1 mL) of la-
beled cells, along with 0.1 mL ofmedium 199 containing
the mycotoxin or solvent control, were incubated for
the desired interval. After incubation, 0.1 mL of su-
pernatant (550g) was transferred to a clean tube and
counted in a gamma scintillation counter. Total release
was obtained by lysing the cells with Triton X-100. The
percent chromium release equals the experimental re-
lease value divided by the total release value. Both val-
ues were corrected for spontaneous release (33).

Adenosine Triphosphate Determination
ATP levels in treated and untreated monolayer cul-

tures were determined by the luciferin-luciferase assay.
At the time of treatment, the medium was removed by
aspiration and replaced with fresh medium containing
mycotoxin. Sodium iodoacetate was used as a positive
control. ATP was extracted directly from the cells with-
out removing the cells from the plates (33). ATP de-
terminations were done in a darkened laboratory with
an ATP photometer using dark-adapted scintillation
vials (33).

Macromolecular Synthesis
For protein-synthesis studies AM monolayers were

incubated in Minimum Essential Medium (MEM) with

Table 1. Characteristics of purified alveolar macrophages from Long-Evans hooded rats.

Percentage of purified AM positive
Cell Viability, %W Cell volume' Esterasec Phagocytosisd
Preadhered 96.4 ± 0.67e 1119.3 ± 46.3 93.6 ± 1.7
Cultured (20 hr) 95.9 ± 0.15 1279.5 ± 102.9 98.7 ± 2.4 92.3 ± 2.09
aPercentage viability as determined by trypan blue exclusion.
'Cell volume values as determined by a Coulter Model ZB electronic cell counter interfaced with a Channelyzer II Cell-sizing attachment.

Cell volume units are in cubic micrometers.
eCells staining positive for nonspecific esterase.
d Cells actively phagocytizing zymosan particles.
'Values represent the mean ± standard deviation.
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FIGURE 1. Effect of T-2 toxin on (A) viability, (B) cell number, and (C) viability index after 20-hr exposure. The arcsine transformation was
used to express percent response.

Table 2. Mean cell volume (MCV) changes following treatment
with T-2 toxin.

MCV, ,um3
Concentration, M 6 hra 18 ha
Control 1278.4 ± 13.3 1236.2 ± 101.5
io-9 1281.7 ± 21.2 1182.9 ± 138.5
10 1279.5 ± 50.6 1107.5 ± 98.0b
1o-7 1264.6 ± 23.8 1002.3 ± 26.5b
10- 1259.0 ± 21.0b NDC
io-5 1244.1 ± 19.9b ND
aValues shown represent the mean ± standard deviation.
bValues are significantly different from controls.
'Not determined.

L-glutamine but lacking leucine (33,35). The cells were
incubated with mycotoxin and 1 p.CiImL [3H]-leucine.
After the desired incubation interval the culture plates
were chilled on ice, the medium removed and the cells
washed, and the monolayers solubilized. TCA-precip-
itable material was collected on glass-fiber filters,
washed, placed in scintillation vials, and counted by
liquid scintillation (33,35).
For RNA-synthesis studies, the treated and un-

treated AM cultures were incubated with [3H]-uridine.
After incubation the cultures were chilled on ice, rinsed,
and solubilized. The solubilized material was counted
by liquid scintillation (33,35).

Phagocytosis Studies
Experiments with T-2 toxin employed [3H]-Staphy-

lococcus aureus (35). In brief, AM monolayers were
prepared in flat-bottomed glass vials and incubated for
48 hr. The medium was removed and replaced with
medium containing T-2 toxin. After 6 hr incubation, the
culture medium was removed, a suspension containing
labeled S. aureus cells was added, and the cultures in-
cubated an additional hour. After this second incuba-
tion, the monolayers were rinsed and solubilized and
the solubilized suspensions collected and counted by liq-
uid scintillation.

Studies with patulin were done with sheep erythro-
cytes labeled with [5"Cr]-sodium chromate and coated
with specific antibody. AM monolayers were prepared
in Linbro tissue culture plates and exposed to the my-
cotoxins. After exposure, the culture medium was re-

Table 3. 5"Cr release following treatment with T-2 toxin.

6hr 18 hr

Concentration, M cpMa % releaseb cpMa % releaseb
Control 1986.3 ± 168.5 6473.1 ± 949.1
i0-9 2252.0 ± 201.1 0.95 6575.0 ± 529.0 0.4
10 2280.1±404.0 1.05 10202.8±350.1c 14.1
10-7 2390.6 ± 291.6 1.40 14027.8 ± 259.4c 28.6
io-6 2783.1 ± 460.1 2.85 17394.5 ± 918.3c 41.3
le 2813.9 ± 293.3c 3.00 18758.7 ± 483.3c 46.4

a Counts per minute; average of 5 replicate tubes ± standard deviation.
b% release = (treated-control)/(total-control). Total release determined by lysing the cells with Triton X-100.
cValues are significantly different from control, based on raw data in CPM, p < 0.05.
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moved and 0.5 mL of fresh medium containing 2 x 107
[51Cr]-labeled sheep red blood cells was added (38). The
monolayers were then incubated 1 hr. Next, the medium
was removed and the bound extracellular sheep cells
were lysed with lysing medium (38). The monolayers
were washed twice more with lysing medium, dissolved
with 0.5% sodium dodecyl sulfate (SDS), and counted
by gamma scintillation (38).

Activation of Alveolar Macrophage by Li-
popolysaccharide
AM monolayers were prepared and incubated in 1

mL medium 199 containing 10 ,ug/mL lipopolysaccharide
(LPS). After 15 hr incubation with LPS, the medium
was removed and replaced with fresh medium contain-
ing various concentrations of T-2 toxin and [14C]-glu-
cosamine and incubated for 6 hr. The monolayers were
then rinsed, solubilized, and counted by liquid scintil-
lation. Activation was expressed as the stimulation in-
dex relative to untreated controls (35).

Lymphokine Activation of Alveolar Macro-
phages
AM activation with lymphokines was assayed as has

been described for LPS activation. Briefly, crude lym-
phokine preparations were made from lymphocytes iso-
lated from rat spleens and tested for their ability to
stimulate incorporation of ['4C]-glucosamine. The de-
tails of this procedure have been described elsewhere
(35).

Results
Studies with T-2 Toxin
The cellular characteristics of isolated and cultured

rat alveolar macrophages are presented in Table 1. The
data indicate that the cultured cells are a viable and
nearly homogeneous population of AM.
The effect of T-2 toxin on viability, cell number, and

viability index is presented in Figure 1 (A-C, respec-
tively). According to Waters et al. (36,37), the arcsine
transformation is appropriate for dose-response studies
and viability index provides a better indication of cy-
totoxicity than either percent viability or the cell num-
ber ratio when cell lysis is rapid. T-2 toxin produced
clear cytotoxic effects by all three parameters. The
EDr0 for viability index was 8.9 x 104 M affter 20 hr
treatment.
The effect of T-2 toxin on mean cell volume (MCV)

after 6 and 18 hr exposure is shown in Table 2. MCV
values were not significantly different from control val-
ues after 6 hr exposure at any concentration < 1 x
10N6M.On the other hand, 1 x 10' M T-2 toxin resulted
in a significant decrease in mean cell volume after 18 hr
exposure. Chromium release data for AM treated with
T-2 toxin for 6 and 18 hr are shown in Table 3. Although
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FIGURE 2. Effect of T-2 toxin on synthesis of (A) protein and (B)
RNA by rat alveolar macrophages in vitro: (0) untreated control;
(0) treatment with 1le M T-2 toxin; (U) treatment with 10i7 M
T-2 toxin.

there was a trend toward increasing chromium release
with increasing T-2 toxin concentration at 6 hr, there
was no significant difference between treated and con-
trol cultures at any dose < 1 x 10' M T-2 toxin. On
the other hand, there was a significant increase in chro-
mium release in cultures treated for 18 hr at 1 x 10-"
M T-2 toxin. Thus, the effects of T-2 toxin were both
dose- and time-dependent. ATP levels in cultures
treated with T-2 toxin showed a slight but not significant
(p > 0.05) elevation in ATP (35).
Figure 2 illustrates the effect ofT-2 toxin on synthesis

of protein (Fig. 2A) and RNA (Fig. 2B) in cultured rat
AM. The results indicate that control cultures incor-
porated labeled precursors at a nearly linear rate,
whereas incorporation of label into macromolecules was
reduced in the presence of T-2 toxin. The inhibitory
effect was most remarkable with respect to protein syn-
thesis. For example, leucine incorporation ceased im-
mediately in cultures containing 1 x i0n M T-2 toxin
and terminated after 2 hr incubation in cultures con-
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Table 4. Effect of T-2 toxin on phagocytosis of [3H}.Staphylococcus aureus by alveolar macrophages.a

Experiment 1 Experiment 2
Concentration, M CpMb % control CpMb % control
Control 1643.8 ± 214.1 100 1868.1 ± 216.4 100
10 1635.1 ± 101.7 99.5 1846.6 ± 121.5 98.8
lr7 1367.4 ± 232.8c 83.5 1533.3 ± 79.7c 82.1
aMacrophages were treated 6 hr with T-2 toxin.
b The values shown represent the means ± standard deviation.
'Values are significantly different from the controls, p < 0.05.

taining 1 x 1i0 M T-2. On the other hand, RNA syn- Studies with Patulin
thesis was terminated after 4 hr at 1 x 107 M T-2 In contrast to the effect of T-2 toxin on MCV, patulin

The results of phagocytosis studies with [3H]-S. a- caused a significant increase in mean cell volume after
reus indicate that the phagocytic activity was signifi- 2 hr (but not 1 hr) exposure at 1 x 10-3 M. Chromiumxsda t MQbut not at siniM release from alveolar macrophages following exposurecantly inhibited at I x 10- M but not at 1 x le M to patulin was both time- and concentr#tion-dependent.
T-2 toxin (Table 4). In two identical experiments the Treatment of these cells at > 1.5 x 10-4 M caused
phagocytic activity of AM cultures treated with 1 x significant chromium release within 30 min (Table 6).
10-7M T-2 toxin was reduced to 83.5 and 82.1% ofcontrol Adenosine triphosphate (ATP) concentrations in AM
cultures. monolayer cultures were markedly inhibited within 1
The effect of T-2 toxin on AM macrophage activation hr at concentrations of > 5 x 10-5 M patulin (Table 7).

was determined by incubating AM with either LPS (10 Incorporation of [3H]-precursors into protein and
,ug/mL) or lymphokines generated by mitogen-stimu- RNA was also strongly inhibited by patulin (Table 6).
lated rat lymphocytes. LPS markedly enhanced [14C]- Inhibition was both time- and concentration-dependent
glucosamine uptake. However, both 1 x 10 M and 1 for both classes of molecules but protein synthesis was
x i0-7 M T-2 toxin caused significant inhibition of [14C]- sensitive to 10- to 100-fold lower concentrations of pa-
glucosamine uptake in LPS-stimulated cultures (Table tulin than RNA synthesis at the same time interval.
5). Similarly, lymphokines derived from phytohemag- The dose producing 50% inhibition at 1 hr (ED50) was
glutinin (PHA)-stimulated rat lymphocyte cultures pro- estimated at ca. 1.6 x 10-6 M and 1.0 x 10-5 M for
moted [14C]-glucosamine uptake. The addition of T-2 [3H]-leucine and [3H]-uridine incorporation, i.e., protein
toxin at 1 x 10- or 1 x 10- M concentrations inhibited and RNA synthesis, respectively.
[14C]-glucosamine uptake by AM stimulated with lym- Patulin strongly inhibited phagocytosis of [51Cr]-
phokines (Table 5). An identical experiment, performed sheep erythrocytes (Table 8) and there was significant
with Concanavalin-A-stimulated rat lymphocyte cul- i07 Mp.. . . . ........ m~~~~ihibition of phagocytosis at > 5 x 1 -Mpatulin (p <tures gave similar results (data not shown). 0.05) (Table 9).

Table 5. T-2 toxin inhibition of alveolar macrophage activation by phytohemoglutinin-generated lymphokines.

[14C] Glucosssamine incorporation
Treatment' CPMb SIc
Negative control 70.8 ± 15.7
10 ,ug/mL LPS 1686.8 ± 166.3 23.8
Control supernatantd 112.1 ± 8.6 1.6
Reconstitution controle 135.4 ± 10.4 1.9
50 ,ug/mL PHAf 1308.9 ± 108.2 18.5

50 ,ug/mL + 10 M T-2 688.5 ± 69.99 9.7
50 ,jg/mL + 10-7 M T-2 684.6 ± 20.49 9.7

100 ,ug/mL PHAf 1559.0 ± 87.4 22.6
100 pLg/mL + 10- M 473.9 ± 20.0k 6.7
100 ,ug/mL + 10-7 M 468.5 ± 89.2g 6.6

aMacrophages were stimulated for 15 hr with lympholdnes and then treated 6 hr with T-2 toxin.
b Mean values ± standard deviation.
'Stimulation index.
d Supernatant from mitogen-free lymphocytes; no PHA added.
ePHA was added to supernates of control lymphocyte cultures at the conclusion of the incubation period to control for the carryover of the

mitogens into macrophage culture.
'Supernatant from lymphocytes incubated with 50 or 100 ,ug/mL PHA; 10 p,L of the lymphokine preparation was added to the macrophage

culture.
gValues are significantly different from controls at p < 0.005.
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Table 6. 51Cr release following short-term exposure of alveolar macrophages to patulin.

Treatment CPMa Probabilityb % release'
30-min exposure

Spontaneous released 1766.4 ± 52.7
Total releasee 12018.0 ± 163.5
5 x 10- M 1811.6 ±24.3 >0.5 0.4
1.5 x 10- M 2048.2 ± 87.0 <0.0002 2.7
5 x 10 4M 2562.8 ± 57.3 <0.0001 7.8

60-min exposure
Spontaneous release 2216.0 ± 60.2
Total release 12874.8 ± 453.6
5 x 10-5 M 2273.4 ± 14.2 <0.05 0.5
1.5 x 10 4M 2763.2 ± 101.0 <0.0001 5.1
5 x 10- M 4092.4 ± 130.7 <0.0001 17.6

120-min exposure
Spontaneous release 2330.6 ± 116.0
Total release 12319.4 ± 129.9
1.5 x 10-5 M 2156.4 ± 103.4 >0.05 -1.7
5 x 10- M 3074.4 ± 76.7 <0.0001 7.4
1.5 x 10 4M 4967.6 ± 133.1 <0.0001 6.4
5 x 10 4M 6754.4 ± 57.3 <0.0001 44.3

aCounts per minute; average of 5 replicate tubes ± standard deviation.
bOne-tailed t test, 8 degrees of freedom
e% release = (treated-spontaneous)/(total-spontaneous).
d Untreated control cells.
eCells lysed with Triton X-100.

Table 7. Effect of patulin on ATP levels in rat alveolar
macrophage cultures.a

Concentration (M) ATP, ng/mL % of control
Medium controlb 287.8 ± 26.2 100
Solvent controlc 323.5 ± 69.6 112.4
1.5 x 106 274.9 ± 43.2 95.5
5 x 106 253.7±34.9 88.2
1.5 x 10-5 216.5 ± 21.7 75.2
5 x 105 180.2 ± 38.7e 62.6
1.5 x 104 99.6 ± 10.5e 34.6
5 x 104 33.9 ± 5.3e 11.8
Positive controld 67.6 ± 12.le 23.5

a 1 hr exposure at 37°C in 5% CO2.
"20 ILL of medium used in place of DMSO.
C20 ILL of DMSO; final concentration = 2.0% DMSO.
d 0.3 mM sodium iodoacetate.
eSignificant, one-tailed t test, p < 0.05.

Discussion
Viability determinations after exposure ofAM to sub-

micromolar concentrations of T-2 toxin for 20 hr dem-
onstrated that the toxin was cytotoxic and that the ef-
fect of T-2 toxin on AM viability, cell number, and
viability index was dose dependent. The viability index
parameter developed by Waters et al. (36,37) at the
Environmental Protection Agency to assess cytotoxic-
ity of environmental compounds is useful when cell
death proceeds via mechanisms that result in differing
degrees of cell lysis.
Mean cell volume values in cells treated with T-2 toxin

for 6 hr were not significantly different from untreated
cells but AM incubated 18 hr with T-2 toxin displayed
a dose-dependent decrease in their cell volume values.
Cultures containing 1 x 10' M T-2 toxin were signif-
icantly different from control cultures after 18 hr ex-

posure. Scanning electron microscopy revealed surface
morphological alterations in the alveolar macrophage in
vitro that reflect varying degrees of cell damage (34),
and it is possible that the mean cell volume values re-
flected extensive cell fragmentation.
Chromium release studies were performed after 6 and

18 hr of incubation to study the effect of T-2 toxin on
membrane integrity. At low concentrations known to
inhibit protein and RNA synthesis, there was no effect
on the amount of chromium released after 6 hr of ex-
posure. However, with 1 x 10-5 M T-2 toxin, a signif-
icant amount of chromium was released after 6 hr in
comparison to control cultures. There was extensive
leakage of chromium from cells treated for 18 hr at S
1 x 10-8 M T-2 toxin. It is unlikely that membrane
damage plays a significant role in cytotoxicity at low
concentrations of T-2 toxin at - 6 hr, since sublethal
concentrations of T-2 toxin significantly inhibited pro-
tein synthesis without significant chromium release.
The most remarkable effect of T-2 toxin on rat al-

veolar macrophage was on protein synthesis. Inhibition
of protein synthesis occurred at an earlier time and with
a lower concentration of T-2 toxin than RNA synthesis,
viability index, mean cell volume changes, or chromium
release. It is possible that these other effects are sec-
ondary to the inhibition of protein synthesis observed.
Measurements of ATP levels in treated cells suggest
that the inhibition of protein synthesis observed cannot
be explained by depletion of ATP levels in the cells.
Although there was a 90% decrease in ATP levels in
the positive control (sodium iodoacetate), there was no
decrease in cultures treated with T-2 toxin at concen-
trations which significantly inhibit protein synthesis
(35).
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Table 8. Inhibition of incorporation of 3H-leucine and 3H-uridine in alveolar macrophage cultures by patulin.

'H-leucinea 3H-uridineb
Exposure, Concentration, CPMC (X ± SD) % of Exposure, Concentration, CPMC (X + SD) % of

hr M control hr M control
0.5 Control 262.3 ± 37.8 100 0.5 Control 2445.2 + 893.7 100

10-6 186.7 ± 30.7d 71.2 10-5 2522.5 ± 443.7 103.2
lo-6 54.7 ± 12.4d 20.8 104 1686.6 ± 318.3d 69.0
104 39.6 ± 10.5d 15.1 10-3 537.4 ± 470.0d 22.0

1.0 Control 583.4 ± 100.2 100 1.0 Control 3454.6 ± 639.6 100
10-6 475.3 74.ld 81.5 10-5 3989.6 ± 607.0 115.5
10-5 77.5 + 9.6d 13.3 104 1719.2 ± 462.4d 49.8
104 38.1 ± 10.9d 6.5 10-3 219.3 ± go.od 6.3

2.0 Control 1634.2 ± 497.4 100 2.0 Control 5315.8 ± 1469.8 100
10-6 969.3 ± 368.4d 59.3 10-5 6792.3 ± 1669.0" 127.8
10- 125.7 ± 40.3" 7.7 104 2211.3 ± 1134.9" 41.6
104 51.2 ± 9.4d 3.1 10-3 184.3 ± 53.5" 3.5

4.0 Control 2262.1 ± 645.4 100 4.0 Control 8004.8 ± 1649.3 100
10-6 1203.6 ± 269.7c 53.2 10-5 15318.9 ± 2963.9" 191.4
10- 114.6 ± 23.9" 5.1 104 710.4 ± 455.5" 8.9
104 45.0 ± 9.2 2.0 10-3 222.0 ± 103.3" 2.8

aUsed to monitor protein synthesis.
bUsed to monitor RNA synthesis.
'Counts per minute; average ± standard deviation; all values are based on two experiments with four replications each.
d Significantly different from the control, two-tailed t test, p < 0.05.

Table 9. Effect of patulin on phagocytosis of "lCrShEA. &b

Concentration, M CPMC % of control
Control 689.3 ± 119.7 100
5.0 x 10-7 506.9 ± 140.2" 73.5
1.5 x 107 376.4 ± 76.2d 54.6
5.0 x 106 265.7 ± 34.5d 38.5
5.0 x 10-6 180.4 ± 26.2" 26.2
1.5 x 104 114.4 ± 24.ld 16.6
aPatulin exposure 1 hr.
b&1Cr-labeled antibody-coated sheep erythrocytes.
'Values shown represent the mean ± standard deviation. The ex-

periment was repeated twice with similar results.
dValues are significantly different from the control, p < 0.05.

T-2 toxin had a significant effect on phagocytosis of
serum-opsonized S. aureus. Massaro et al. (39) have
shown that protein synthesis is not required and is de-
pressed during phagocytosis. It is possible, however,
that T-2 toxin inhibits phagocytosis by inhibiting the
synthesis of proteins needed for the phagocytosis, with-
out directly inhibiting the endocytosis process per se.
Several proteins are known to be required for phago-
cytosis (40-42).
The activated AM is a critical component of the im-

mune response. For example, activated macrophages
demonstrate an increased capacity of phagocytosis and
increased production of various monokines involved in
regulation ofboth T- and B- cell function (43). Hammond
and Dvorak (44) have observed that activated macro-
phages preferentially incorporate glucosamine into their
membranes. Our results indicate that T-2 toxin signif-
icantly inhibited AM incorporation of labeled glucosa-
mine (Table 5). Macrophage activation was further in-
vestigated by stimulating the cells with mitogen-
generated lymphokines in the presence and absence of
T-2 toxin. The results clearly demonstrate that mac-

rophage activation is due to the lymphocyte mediators
and not due to the mitogens. AM activation by LPS and
the crude lymphokines, as assayed by glucosamine in-
corporation, is also significantly inhibited by T-2 toxin.
By suppressing macrophage activation the cell becomes
unable to function normally as an immunologically com-
petent cell. The means by which T-2 toxin inhibits AM
activation is probably due to the ability of the toxin to
inhibit protein synthesis. Inhibition ofmacrophage mon-
okines such as lymphocyte-activating factor (interleukin
I), which are known to help regulate the immune re-
sponse to foreign antigens, would be quite detrimental
to the immunological state of an individual. Also, inhi-
bition of phagocytosis would likely increase suscepti-
bility to opportunist infections. Since there is abundant
evidence that macrophages in collaboration with T- and
B-lymphocytes can destroy neoplastic cells in vivo
(45,46), the possibility that exposure to T-2 toxin could
lead to increased risk for cancer should be considered.
In this context, Schoental et al. (47) have reported in-
duction of tumors of the digestive tract and the brain
in rats given T-2 toxin by intragastric administration.

Patulin is toxic to rat alveolar macrophages in vitro,
causing an increase in mean cell volume, chromium re-
lease, decrease in cellular ATP, inhibition ofprotein and
RNA synthesis, and inhibition of phagocytosis. Mean
cell volume and chromium release reflect membrane
transport properties. Our data suggest the possibility
that patulin may have a direct effect on the membrane
(33) because these effects were observed more quickly
than one would predict as a secondary effect ofinhibition
of protein synthesis. In contrast, the effect of T-2 toxin
on mean cell volume and chromium release was delayed
and appeared to be secondary to the inhibition ofprotein
synthesis. T-2 toxin is approximately two orders ofmag-
nitude more toxic to protein synthesis in these cells than
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patulin, yet T-2 toxin had no measurable effect on mean
cell volume, chromium release or ATP levels after 6 hr
exposure at levels of T-2 toxin which strongly inhibited
protein synthesis. The decrease in mean cell volume
observed after 18 hr exposure appeared to be the result
of cell fragmentation. Thus the action of patulin in these
cells is distinct from that of T-2 toxin. Patulin had a
roughly comparable effect on phagocytosis to T-2 toxin
if one considers both dose and exposure time, even
though T-2 toxin was more toxic than patulin with re-
spect to protein synthesis. Cells treated with 5 x 10-
M patulin for 1 hr had a similar phagocytic response to
cells treated with 10O M T-2 toxin for 6 hr.

T-2 toxin and patulin were shown to inhibit several
critical cellular functions in cultured alveolar macro-
phages. Therefore, inhalation of airborne grain dust or
silage particulates contaminated with these mycotoxins
could have deleterious effects on normal macrophage
function and could pose a hazard to exposed workers.

The authors thank Mrs. Beverly Carter for typing the manuscript.
Portions ofthe data were reproduced by permission of Environmental
Research (32,269; 33,246).

Mention of trade names is for information only and does not con-
stitute endorsement over other products not mentioned.
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